main.go 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. package main
  2. import (
  3. "fmt"
  4. "os"
  5. "sort"
  6. )
  7. var input *os.File
  8. var output *os.File
  9. var R int
  10. var C int
  11. var F int
  12. var N int
  13. var B int
  14. var T int
  15. var Rides []*Ride
  16. var Cars []*Car
  17. var Sched Scheduler
  18. type Ride struct {
  19. ID int
  20. a, b, x, y, s, f int
  21. used bool
  22. }
  23. func (r Ride) Length() int {
  24. xdist := r.a - r.x
  25. if xdist < 0 {
  26. xdist = -xdist
  27. }
  28. ydist := r.b - r.y
  29. if ydist < 0 {
  30. ydist = -ydist
  31. }
  32. return xdist + ydist
  33. }
  34. func abs(x int) int {
  35. if x < 0 {
  36. return -x
  37. } else {
  38. return x
  39. }
  40. }
  41. func (r *Ride) length() int {
  42. return abs(r.a-r.x) + abs(r.b-r.y)
  43. }
  44. type ByEndtime []*Ride
  45. func (rs ByEndtime) Len() int { return len(rs) }
  46. func (rs ByEndtime) Swap(i, j int) { rs[i], rs[j] = rs[j], rs[i] }
  47. func (rs ByEndtime) Less(i, j int) bool {
  48. return rs[i].f < rs[j].f || (rs[i].f == rs[j].f && rs[i].length() < rs[j].length())
  49. }
  50. type Scheduler interface {
  51. Add(*Car)
  52. Pop() *Car
  53. }
  54. type Car struct {
  55. ID int
  56. Rides []int
  57. Arrival int
  58. X int
  59. Y int
  60. }
  61. func (c *Car) Update(r *Ride) {
  62. c.moveTo(r.a, r.b)
  63. if c.Arrival < r.s {
  64. c.Arrival = r.s
  65. }
  66. c.moveTo(r.x, r.y)
  67. c.Rides = append(c.Rides, r.ID)
  68. }
  69. func (c *Car) EarliestFinish(r *Ride) int {
  70. copy := &Car{
  71. Arrival: c.Arrival,
  72. X: c.X,
  73. Y: c.Y,
  74. }
  75. copy.moveTo(r.a, r.b)
  76. if copy.Arrival < r.s {
  77. copy.Arrival = r.s
  78. }
  79. copy.moveTo(r.x, r.y)
  80. return copy.Arrival
  81. }
  82. func (c *Car) moveTo(x, y int) {
  83. xdist := c.X - x
  84. if xdist < 0 {
  85. xdist = -xdist
  86. }
  87. ydist := c.Y - y
  88. if ydist < 0 {
  89. ydist = -ydist
  90. }
  91. c.Arrival += xdist + ydist
  92. c.X = x
  93. c.Y = y
  94. }
  95. func (c *Car) distanceTo(x, y int) int {
  96. return abs(c.X-x) + abs(c.Y-y)
  97. }
  98. func max(a, b int) int {
  99. if a > b {
  100. return a
  101. } else {
  102. return b
  103. }
  104. }
  105. func Choose(c *Car) *Ride {
  106. var bestRide *Ride
  107. bestLenOfRide := 0
  108. bestTotal := 0
  109. // fmt.Printf("car %d\n", c.ID)
  110. for _, r := range Rides {
  111. if r.used {
  112. continue
  113. }
  114. // if r.f < c.EarliestFinish(r) {
  115. // continue
  116. // }
  117. // fmt.Printf("%d %d -> %d %d\n", r.a, r.b, r.x, r.y)
  118. lenOfRide := r.length()
  119. total := max(c.distanceTo(r.a, r.b), r.s-c.Arrival) + lenOfRide
  120. // fmt.Printf("%d/%d\n", lenOfRide, total)
  121. if bestRide == nil || lenOfRide*bestTotal > total*bestLenOfRide {
  122. bestLenOfRide = lenOfRide
  123. bestTotal = total
  124. bestRide = r
  125. }
  126. }
  127. // if bestRide != nil {
  128. // fmt.Printf("Picking %d %d -> %d %d\n", bestRide.a, bestRide.b, bestRide.x, bestRide.y)
  129. // }
  130. return bestRide
  131. }
  132. func assign() bool {
  133. c := Sched.Pop()
  134. if c == nil {
  135. return false
  136. }
  137. r := Choose(c)
  138. if r == nil {
  139. return true
  140. }
  141. r.used = true
  142. c.Update(r)
  143. Sched.Add(c)
  144. return true
  145. }
  146. func solve() {
  147. sort.Sort(ByEndtime(Rides))
  148. Sched = &prioq{}
  149. // create cars
  150. for i := 0; i < F; i++ {
  151. c := &Car{
  152. ID: i,
  153. Arrival: 0,
  154. X: 0,
  155. Y: 0,
  156. }
  157. Cars = append(Cars, c)
  158. Sched.Add(c)
  159. }
  160. for assign() {
  161. }
  162. for _, c := range Cars {
  163. fmt.Fprintf(output, "%d", len(c.Rides))
  164. for _, ri := range c.Rides {
  165. fmt.Fprintf(output, " %d", ri)
  166. }
  167. fmt.Fprintf(output, "\n")
  168. }
  169. }
  170. func main() {
  171. sample := os.Args[1]
  172. fileIn := sample + ".in"
  173. fileOut := sample + ".out"
  174. var err error
  175. input, err = os.Open(fileIn)
  176. if err != nil {
  177. panic(fmt.Sprintf("open %s: %v", fileIn, err))
  178. }
  179. output, err = os.Create(fileOut)
  180. if err != nil {
  181. panic(fmt.Sprintf("creating %s: %v", fileOut, err))
  182. }
  183. defer input.Close()
  184. defer output.Close()
  185. // Global
  186. R = readInt()
  187. C = readInt()
  188. F = readInt()
  189. N = readInt()
  190. B = readInt()
  191. T = readInt()
  192. for i := 0; i < N; i++ {
  193. Rides = append(Rides, &Ride{
  194. ID: i,
  195. a: readInt(),
  196. b: readInt(),
  197. x: readInt(),
  198. y: readInt(),
  199. s: readInt(),
  200. f: readInt(),
  201. })
  202. }
  203. solve()
  204. }
  205. func readInt() int {
  206. var i int
  207. fmt.Fscanf(input, "%d", &i)
  208. return i
  209. }
  210. func readString() string {
  211. var str string
  212. fmt.Fscanf(input, "%s", &str)
  213. return str
  214. }
  215. func readFloat() float64 {
  216. var x float64
  217. fmt.Fscanf(input, "%f", &x)
  218. return x
  219. }
  220. // Prioq
  221. // Invariant: both children are bigger
  222. type prioq struct {
  223. bintree []*Car
  224. }
  225. func (pq *prioq) Add(car *Car) {
  226. pq.bintree = append(pq.bintree, car)
  227. // Rebalance tree to respect invariant
  228. var i = len(pq.bintree) - 1
  229. var p = (i - 1) / 2
  230. for p >= 0 && pq.bintree[p].Arrival > pq.bintree[i].Arrival {
  231. pq.bintree[p], pq.bintree[i] = pq.bintree[i], pq.bintree[p]
  232. i = p
  233. p = (i - 1) / 2
  234. }
  235. }
  236. func (pq *prioq) Pop() *Car {
  237. if len(pq.bintree) == 0 {
  238. return nil
  239. }
  240. if len(pq.bintree) == 1 {
  241. elem := pq.bintree[0]
  242. pq.bintree = pq.bintree[:0]
  243. return elem
  244. }
  245. elem := pq.bintree[0]
  246. // Put last element at root
  247. pq.bintree[0] = pq.bintree[len(pq.bintree)-1]
  248. // Remove last element
  249. pq.bintree = pq.bintree[:len(pq.bintree)-1]
  250. // 1 9
  251. // 10 9 10 12
  252. // 11 12 13 14 -> 11 12 13 14
  253. // 12
  254. // Rebalance tree to respect invariant
  255. len := len(pq.bintree)
  256. i, left, right := 0, 0, 0
  257. for {
  258. left = 2*i + 1
  259. right = 2*i + 2
  260. if left < len && right < len { // Two children
  261. if pq.bintree[left].Arrival <= pq.bintree[right].Arrival {
  262. if pq.bintree[i].Arrival <= pq.bintree[left].Arrival {
  263. break // Inferior to both children
  264. } else {
  265. pq.bintree[i], pq.bintree[left] = pq.bintree[left], pq.bintree[i]
  266. i = left
  267. }
  268. } else {
  269. if pq.bintree[i].Arrival <= pq.bintree[right].Arrival {
  270. break // Inferior to both children
  271. } else {
  272. pq.bintree[i], pq.bintree[right] = pq.bintree[right], pq.bintree[i]
  273. i = right
  274. }
  275. }
  276. } else if left < len { // One child (left)
  277. if pq.bintree[i].Arrival <= pq.bintree[left].Arrival {
  278. break // Inferior to only child
  279. }
  280. pq.bintree[i], pq.bintree[left] = pq.bintree[left], pq.bintree[i]
  281. i = left
  282. } else { // No child
  283. break
  284. }
  285. }
  286. return elem
  287. }
  288. func (pq *prioq) empty() bool {
  289. return len(pq.bintree) == 0
  290. }