main.go 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325
  1. package main
  2. import (
  3. "fmt"
  4. "os"
  5. "sort"
  6. )
  7. var input *os.File
  8. var output *os.File
  9. var R int
  10. var C int
  11. var F int
  12. var N int
  13. var B int
  14. var T int
  15. var Rides []*Ride
  16. var Cars []*Car
  17. var Sched Scheduler
  18. type Ride struct {
  19. ID int
  20. a, b, x, y, s, f int
  21. used bool
  22. }
  23. func (r Ride) Length() int {
  24. xdist := r.a - r.x
  25. if xdist < 0 {
  26. xdist = -xdist
  27. }
  28. ydist := r.b - r.y
  29. if ydist < 0 {
  30. ydist = -ydist
  31. }
  32. return xdist + ydist
  33. }
  34. func abs(x int) int {
  35. if x < 0 {
  36. return -x
  37. } else {
  38. return x
  39. }
  40. }
  41. func (r *Ride) length() int {
  42. return abs(r.a-r.x) + abs(r.b-r.y)
  43. }
  44. type ByEndtime []*Ride
  45. func (rs ByEndtime) Len() int { return len(rs) }
  46. func (rs ByEndtime) Swap(i, j int) { rs[i], rs[j] = rs[j], rs[i] }
  47. func (rs ByEndtime) Less(i, j int) bool {
  48. return rs[i].f < rs[j].f
  49. }
  50. type Scheduler interface {
  51. Add(*Car)
  52. Pop() *Car
  53. }
  54. type Car struct {
  55. ID int
  56. Rides []int
  57. Arrival int
  58. X int
  59. Y int
  60. }
  61. func (c *Car) Update(r *Ride) {
  62. c.moveTo(r.a, r.b)
  63. c.moveTo(r.x, r.y)
  64. c.Rides = append(c.Rides, r.ID)
  65. }
  66. func (c *Car) EarliestFinish(r *Ride) int {
  67. copy := &Car{
  68. Arrival: c.Arrival,
  69. X: c.X,
  70. Y: c.Y,
  71. }
  72. c.moveTo(r.a, r.b)
  73. c.moveTo(r.x, r.y)
  74. return copy.Arrival
  75. }
  76. func (c *Car) moveTo(x, y int) {
  77. xdist := c.X - x
  78. if xdist < 0 {
  79. xdist = -xdist
  80. }
  81. ydist := c.Y - y
  82. if ydist < 0 {
  83. ydist = -ydist
  84. }
  85. c.Arrival += xdist + ydist
  86. c.X = x
  87. c.Y = y
  88. }
  89. func (c *Car) distanceTo(x, y int) int {
  90. return abs(c.X-x) + abs(c.Y-y)
  91. }
  92. func Choose(c *Car) *Ride {
  93. bestRide := Rides[0]
  94. bestLenOfRide := Rides[0].length()
  95. bestTotal := c.distanceTo(Rides[0].a, Rides[0].b) + bestLenOfRide
  96. for _, r := range Rides[1:] {
  97. if r.used {
  98. continue
  99. }
  100. if r.f < c.EarliestFinish(r) {
  101. continue
  102. }
  103. lenOfRide := r.length()
  104. total := c.distanceTo(r.a, r.b) + lenOfRide
  105. if lenOfRide*bestTotal < total*bestLenOfRide {
  106. bestLenOfRide = lenOfRide
  107. bestTotal = total
  108. bestRide = r
  109. }
  110. return r
  111. }
  112. return bestRide
  113. }
  114. func assign() bool {
  115. c := Sched.Pop()
  116. if c == nil {
  117. return false
  118. }
  119. r := Choose(c)
  120. if r == nil {
  121. return true
  122. }
  123. r.used = true
  124. c.Update(r)
  125. Sched.Add(c)
  126. return true
  127. }
  128. func solve() {
  129. sort.Sort(ByEndtime(Rides))
  130. Sched = &prioq{}
  131. // create cars
  132. for i := 0; i < F; i++ {
  133. c := &Car{
  134. ID: i,
  135. Arrival: 0,
  136. X: 0,
  137. Y: 0,
  138. }
  139. Cars = append(Cars, c)
  140. Sched.Add(c)
  141. }
  142. for assign() {
  143. }
  144. for _, c := range Cars {
  145. fmt.Fprintf(output, "%d", len(c.Rides))
  146. for _, ri := range c.Rides {
  147. fmt.Fprintf(output, " %d", ri)
  148. }
  149. fmt.Fprintf(output, "\n")
  150. }
  151. }
  152. func main() {
  153. sample := os.Args[1]
  154. fileIn := sample + ".in"
  155. fileOut := sample + ".out"
  156. var err error
  157. input, err = os.Open(fileIn)
  158. if err != nil {
  159. panic(fmt.Sprintf("open %s: %v", fileIn, err))
  160. }
  161. output, err = os.Create(fileOut)
  162. if err != nil {
  163. panic(fmt.Sprintf("creating %s: %v", fileOut, err))
  164. }
  165. defer input.Close()
  166. defer output.Close()
  167. // Global
  168. R = readInt()
  169. C = readInt()
  170. F = readInt()
  171. N = readInt()
  172. B = readInt()
  173. T = readInt()
  174. for i := 0; i < N; i++ {
  175. Rides = append(Rides, &Ride{
  176. ID: i,
  177. a: readInt(),
  178. b: readInt(),
  179. x: readInt(),
  180. y: readInt(),
  181. s: readInt(),
  182. f: readInt(),
  183. })
  184. }
  185. solve()
  186. }
  187. func readInt() int {
  188. var i int
  189. fmt.Fscanf(input, "%d", &i)
  190. return i
  191. }
  192. func readString() string {
  193. var str string
  194. fmt.Fscanf(input, "%s", &str)
  195. return str
  196. }
  197. func readFloat() float64 {
  198. var x float64
  199. fmt.Fscanf(input, "%f", &x)
  200. return x
  201. }
  202. // Prioq
  203. // Invariant: both children are bigger
  204. type prioq struct {
  205. bintree []*Car
  206. }
  207. func (pq *prioq) Add(car *Car) {
  208. pq.bintree = append(pq.bintree, car)
  209. // Rebalance tree to respect invariant
  210. var i = len(pq.bintree) - 1
  211. var p = (i - 1) / 2
  212. for p >= 0 && pq.bintree[p].Arrival > pq.bintree[i].Arrival {
  213. pq.bintree[p], pq.bintree[i] = pq.bintree[i], pq.bintree[p]
  214. i = p
  215. p = (i - 1) / 2
  216. }
  217. }
  218. func (pq *prioq) Pop() *Car {
  219. if len(pq.bintree) == 0 {
  220. return nil
  221. }
  222. if len(pq.bintree) == 1 {
  223. elem := pq.bintree[0]
  224. pq.bintree = pq.bintree[:0]
  225. return elem
  226. }
  227. elem := pq.bintree[0]
  228. // Put last element at root
  229. pq.bintree[0] = pq.bintree[len(pq.bintree)-1]
  230. // Remove last element
  231. pq.bintree = pq.bintree[:len(pq.bintree)-1]
  232. // 1 9
  233. // 10 9 10 12
  234. // 11 12 13 14 -> 11 12 13 14
  235. // 12
  236. // Rebalance tree to respect invariant
  237. len := len(pq.bintree)
  238. i, left, right := 0, 0, 0
  239. for {
  240. left = 2*i + 1
  241. right = 2*i + 2
  242. if left < len && right < len { // Two children
  243. if pq.bintree[left].Arrival <= pq.bintree[right].Arrival {
  244. if pq.bintree[i].Arrival <= pq.bintree[left].Arrival {
  245. break // Inferior to both children
  246. } else {
  247. pq.bintree[i], pq.bintree[left] = pq.bintree[left], pq.bintree[i]
  248. i = left
  249. }
  250. } else {
  251. if pq.bintree[i].Arrival <= pq.bintree[right].Arrival {
  252. break // Inferior to both children
  253. } else {
  254. pq.bintree[i], pq.bintree[right] = pq.bintree[right], pq.bintree[i]
  255. i = right
  256. }
  257. }
  258. } else if left < len { // One child (left)
  259. if pq.bintree[i].Arrival <= pq.bintree[left].Arrival {
  260. break // Inferior to only child
  261. }
  262. pq.bintree[i], pq.bintree[left] = pq.bintree[left], pq.bintree[i]
  263. i = left
  264. } else { // No child
  265. break
  266. }
  267. }
  268. return elem
  269. }
  270. func (pq *prioq) empty() bool {
  271. return len(pq.bintree) == 0
  272. }