main.go 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. package main
  2. import (
  3. "fmt"
  4. "os"
  5. "sort"
  6. )
  7. var input *os.File
  8. var output *os.File
  9. var R int
  10. var C int
  11. var F int
  12. var N int
  13. var B int
  14. var T int
  15. var Rides []*Ride
  16. var Cars []*Car
  17. var Sched Scheduler
  18. type Ride struct {
  19. ID int
  20. a, b, x, y, s, f int
  21. used bool
  22. }
  23. func (r Ride) Length() int {
  24. xdist := r.a - r.x
  25. if xdist < 0 {
  26. xdist = -xdist
  27. }
  28. ydist := r.b - r.y
  29. if ydist < 0 {
  30. ydist = -ydist
  31. }
  32. return xdist + ydist
  33. }
  34. func abs(x int) int {
  35. if x < 0 {
  36. return -x
  37. } else {
  38. return x
  39. }
  40. }
  41. func (r *Ride) length() int {
  42. return abs(r.a-r.x) + abs(r.b-r.y)
  43. }
  44. type ByEndtime []*Ride
  45. func (rs ByEndtime) Len() int { return len(rs) }
  46. func (rs ByEndtime) Swap(i, j int) { rs[i], rs[j] = rs[j], rs[i] }
  47. func (rs ByEndtime) Less(i, j int) bool {
  48. return rs[i].f < rs[j].f
  49. }
  50. type Scheduler interface {
  51. Add(*Car)
  52. Pop() *Car
  53. }
  54. type Car struct {
  55. ID int
  56. Rides []int
  57. Arrival int
  58. X int
  59. Y int
  60. }
  61. func (c *Car) Update(r *Ride) {
  62. c.moveTo(r.a, r.b)
  63. if c.Arrival < r.s {
  64. c.Arrival = r.s
  65. }
  66. c.moveTo(r.x, r.y)
  67. c.Rides = append(c.Rides, r.ID)
  68. }
  69. func (c *Car) EarliestFinish(r *Ride) int {
  70. copy := &Car{
  71. Arrival: c.Arrival,
  72. X: c.X,
  73. Y: c.Y,
  74. }
  75. c.moveTo(r.a, r.b)
  76. c.moveTo(r.x, r.y)
  77. return copy.Arrival
  78. }
  79. func (c *Car) moveTo(x, y int) {
  80. xdist := c.X - x
  81. if xdist < 0 {
  82. xdist = -xdist
  83. }
  84. ydist := c.Y - y
  85. if ydist < 0 {
  86. ydist = -ydist
  87. }
  88. c.Arrival += xdist + ydist
  89. c.X = x
  90. c.Y = y
  91. }
  92. func (c *Car) distanceTo(x, y int) int {
  93. return abs(c.X-x) + abs(c.Y-y)
  94. }
  95. func max(a, b int) int {
  96. if a > b {
  97. return a
  98. } else {
  99. return b
  100. }
  101. }
  102. func Choose(c *Car) *Ride {
  103. var bestRide *Ride
  104. bestLenOfRide := 0
  105. bestTotal := 0
  106. // fmt.Printf("car %d\n", c.ID)
  107. for _, r := range Rides {
  108. if r.used {
  109. continue
  110. }
  111. // if r.f < c.EarliestFinish(r) {
  112. // continue
  113. // }
  114. // fmt.Printf("%d %d -> %d %d\n", r.a, r.b, r.x, r.y)
  115. lenOfRide := r.length()
  116. total := max(c.distanceTo(r.a, r.b), r.s-c.Arrival) + lenOfRide
  117. // fmt.Printf("%d/%d\n", lenOfRide, total)
  118. if bestRide == nil || lenOfRide*bestTotal > total*bestLenOfRide {
  119. bestLenOfRide = lenOfRide
  120. bestTotal = total
  121. bestRide = r
  122. }
  123. }
  124. // if bestRide != nil {
  125. // fmt.Printf("Picking %d %d -> %d %d\n", bestRide.a, bestRide.b, bestRide.x, bestRide.y)
  126. // }
  127. return bestRide
  128. }
  129. func assign() bool {
  130. c := Sched.Pop()
  131. if c == nil {
  132. return false
  133. }
  134. r := Choose(c)
  135. if r == nil {
  136. return true
  137. }
  138. r.used = true
  139. c.Update(r)
  140. Sched.Add(c)
  141. return true
  142. }
  143. func solve() {
  144. sort.Sort(ByEndtime(Rides))
  145. Sched = &prioq{}
  146. // create cars
  147. for i := 0; i < F; i++ {
  148. c := &Car{
  149. ID: i,
  150. Arrival: 0,
  151. X: 0,
  152. Y: 0,
  153. }
  154. Cars = append(Cars, c)
  155. Sched.Add(c)
  156. }
  157. for assign() {
  158. }
  159. for _, c := range Cars {
  160. fmt.Fprintf(output, "%d", len(c.Rides))
  161. for _, ri := range c.Rides {
  162. fmt.Fprintf(output, " %d", ri)
  163. }
  164. fmt.Fprintf(output, "\n")
  165. }
  166. }
  167. func main() {
  168. sample := os.Args[1]
  169. fileIn := sample + ".in"
  170. fileOut := sample + ".out"
  171. var err error
  172. input, err = os.Open(fileIn)
  173. if err != nil {
  174. panic(fmt.Sprintf("open %s: %v", fileIn, err))
  175. }
  176. output, err = os.Create(fileOut)
  177. if err != nil {
  178. panic(fmt.Sprintf("creating %s: %v", fileOut, err))
  179. }
  180. defer input.Close()
  181. defer output.Close()
  182. // Global
  183. R = readInt()
  184. C = readInt()
  185. F = readInt()
  186. N = readInt()
  187. B = readInt()
  188. T = readInt()
  189. for i := 0; i < N; i++ {
  190. Rides = append(Rides, &Ride{
  191. ID: i,
  192. a: readInt(),
  193. b: readInt(),
  194. x: readInt(),
  195. y: readInt(),
  196. s: readInt(),
  197. f: readInt(),
  198. })
  199. }
  200. solve()
  201. }
  202. func readInt() int {
  203. var i int
  204. fmt.Fscanf(input, "%d", &i)
  205. return i
  206. }
  207. func readString() string {
  208. var str string
  209. fmt.Fscanf(input, "%s", &str)
  210. return str
  211. }
  212. func readFloat() float64 {
  213. var x float64
  214. fmt.Fscanf(input, "%f", &x)
  215. return x
  216. }
  217. // Prioq
  218. // Invariant: both children are bigger
  219. type prioq struct {
  220. bintree []*Car
  221. }
  222. func (pq *prioq) Add(car *Car) {
  223. pq.bintree = append(pq.bintree, car)
  224. // Rebalance tree to respect invariant
  225. var i = len(pq.bintree) - 1
  226. var p = (i - 1) / 2
  227. for p >= 0 && pq.bintree[p].Arrival > pq.bintree[i].Arrival {
  228. pq.bintree[p], pq.bintree[i] = pq.bintree[i], pq.bintree[p]
  229. i = p
  230. p = (i - 1) / 2
  231. }
  232. }
  233. func (pq *prioq) Pop() *Car {
  234. if len(pq.bintree) == 0 {
  235. return nil
  236. }
  237. if len(pq.bintree) == 1 {
  238. elem := pq.bintree[0]
  239. pq.bintree = pq.bintree[:0]
  240. return elem
  241. }
  242. elem := pq.bintree[0]
  243. // Put last element at root
  244. pq.bintree[0] = pq.bintree[len(pq.bintree)-1]
  245. // Remove last element
  246. pq.bintree = pq.bintree[:len(pq.bintree)-1]
  247. // 1 9
  248. // 10 9 10 12
  249. // 11 12 13 14 -> 11 12 13 14
  250. // 12
  251. // Rebalance tree to respect invariant
  252. len := len(pq.bintree)
  253. i, left, right := 0, 0, 0
  254. for {
  255. left = 2*i + 1
  256. right = 2*i + 2
  257. if left < len && right < len { // Two children
  258. if pq.bintree[left].Arrival <= pq.bintree[right].Arrival {
  259. if pq.bintree[i].Arrival <= pq.bintree[left].Arrival {
  260. break // Inferior to both children
  261. } else {
  262. pq.bintree[i], pq.bintree[left] = pq.bintree[left], pq.bintree[i]
  263. i = left
  264. }
  265. } else {
  266. if pq.bintree[i].Arrival <= pq.bintree[right].Arrival {
  267. break // Inferior to both children
  268. } else {
  269. pq.bintree[i], pq.bintree[right] = pq.bintree[right], pq.bintree[i]
  270. i = right
  271. }
  272. }
  273. } else if left < len { // One child (left)
  274. if pq.bintree[i].Arrival <= pq.bintree[left].Arrival {
  275. break // Inferior to only child
  276. }
  277. pq.bintree[i], pq.bintree[left] = pq.bintree[left], pq.bintree[i]
  278. i = left
  279. } else { // No child
  280. break
  281. }
  282. }
  283. return elem
  284. }
  285. func (pq *prioq) empty() bool {
  286. return len(pq.bintree) == 0
  287. }